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Abstract

Molecular statistical theory of temporary polymer networks is an integrated approach to describe the rheological
behavior of such networks based on information at a molecular level. Predictions of the theory regarding the dependence
of viscometric functions on shear rate in stationary shear flow are at satisfactory accord with measurements. However, due
to the exceeding complexity of the descriptive equations, their formulation and assessment has been performed so far only
for cases where hydrodynamic interaction is negligible. In the present work, this effect is included in the model equations
through the Oseen tensor. Incorporating the hydrodynamic interaction for the case of simple shear flow of two different
polystyrene solutions, leads to theoretical results that agree a little better with experimental values, in terms of viscometric
functions. Moreover, a non-zero negative value of the second normal-stress difference is predicted. For the case of elon-
gation flow of the same polystyrene solutions there are no experimental results to compare with, so the appraisal of the
theory was based solely on the reasonable dependence of the computed elongation viscosity on elongation rate.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

It is rather a common consensus in the scientific
community that the rheology of concentrated poly-
mer solutions and polymer melts is based on the
idea of the reptation motion of a macromolecule
0014-3057/$ - see front matter � 2007 Elsevier Ltd. All rights reserved
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[1] confined in a tube-like region made of the sur-
rounding chains [2]. Because of the weakness of
the original Doi–Edwards reptation-tube theory [2]
to describe the phenomenon of viscoelasticity, mod-
ern reptation-tube models incorporate several
improvements such us chain-length fluctuations
[3–5] subchain stretching [6–9], double reptation
[10–12], convective constraint release [13,14].

The progress achieved by recent models, numer-
ical or analytical, is substantial since they manage
.
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Fig. 1. Schematic of the network model. The top picture shows
the relation between the ‘‘actual’’ molecular structure, the chains,
the junctions, the beads and the springs. The bottom picture
shows a four-functional network model with M = 6. For
simplicity, the bead distances hij are shown instead of the
complex macromolecular chains.
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to describe quantitatively most experimental rheo-
logical data with the help of a small set of material
specific parameters such as the tube diameter, the
plateau modulus and the elastic modulus. Neverthe-
less, these parameters have often to be deduced
from experiments in the non-Newtonian range [15]
where, in principle, we have not reached yet the
point of a consistent interpretation concerning the
behavior of entangled polymers [16]. Furthermore,
it seems that the reptation mechanism dominates
in cases of strong entangled polymers with more
than ten entanglements per macromolecule [17]. It
is this reason that made us reappraise an older
molecular statistical theory approach [18] to
describe semi-dilute polymer solutions. The present
work is in the tradition of bead–spring models of
dilute solutions but modified to describe semi-dilute
solutions of weakly entangled polymers (2–10
entanglements per macromolecule) by adding a cre-
ation/decay term for temporary network junctions.
Several variations of the temporary network model
have been communicated in literature improving
different aspects of the analysis each time [19].
Among those that have found broad acceptance,
special attention should be given to the Multimode

Giesekus [20] and Phan-Thien Tanner (PTT) [21]
models which were meant to describe semi-dilute
to lightly entangled polymer solutions and therefore
have relevance to this work. The multimode Gies-
ekus model achieves excellent fits of shear flow data
but not so good fits of elongational flow data
[19,22,23]. On the other hand, the PTT model gives
excellent fits of either shear or elongational flow
data, but not of both of them simultaneously
[19,22,23]. In addition, in complex kinematic flows
such as planar entry flows and flows past a cylinder
both models are capable of providing quantitative
predictions only over a limited range of Weiss-
enberg numbers (i.e. We = kj where k is the mean
relaxation time of the test fluid and j is a character-
istic strain rate in the flow) [24–26]. Moreover, these
models treat polymer flows in a rather phenomeno-
logical manner which does not clarify the physics of
the elementary kinetic processes on a molecular
level. Despite the above shortcomings, it is evident
that the temporary network model has strong
potential. It is hoped that after further development
this approach may offer a tempting alternative in sit-
uations that other theories fail.

The junctions of a temporary polymer network
have by definition the capability to decay and form.
Therefore, such a network presents increased mobil-
ity, compared to a permanent network, which is
macroscopically manifested as viscoelasticity. In
order to estimate the corresponding non-Newtonian
material functions, Kroener and Takserman-Krozer
[18] developed a molecular statistical theory of tem-
porary polymer networks in solution, in the frame-
work of a generalized spring–bead model, in which
springs represent network chains whereas their
beads stand for the non-permanent bonds. A sche-
matic of the network model is shown in Fig. 1.

A chief point of the Kroener and Krozer theory
is the transformation of the generalized Kirkwood
diffusion equation from a high dimensional inte-
gro-differential equation to a high dimensional dif-
ferential equation. This simplification is achieved
through the relaxation time approach [18], due to
which the diffusion equation takes the following
form

oW
ot
þ
XM

i

~ri � ð _~riW Þ ¼ ��pðW � W eqÞ ð1Þ
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where

• W ¼ W ð~R; Z;M ; tÞ is the non-equilibrium proba-
bility density function for the state ½~R; Z;M � at
time t.

• ~R ¼ f~rig ði ¼ 1; 2; . . . ;MÞ is the configurational
position vector for the beads. Z = {zij} is the
set of numbers zij, which denotes how many
monomers form the chain by connecting the
neighboring junctions i and j.

• M is the number of beads per volume V. In the
model (four-functional network without open
ends) there are M junctions and 2M chains con-
necting them.

• ~ri is the Nabla operator belonging to~ri.
• Weq is the equilibrium probability density func-

tion. It must be mentioned that within the relax-
ation time approach [18] W(Z) = Weq(Z). We
expect that this is a good approximation as long
as the velocity gradient is not too large.

• _~ri is the velocity of the ith bead.
• �p ¼ �pð~R; ZÞ �

R R
pð~R; Z ! ~R0; Z 0Þd~R0dZ 0 is the

probability per unit time that the configuration
ð~R; ZÞ will decay into any other configuration.
This was calculated [18] under the assumption
that (i) the density of decay processes is not too
high in time and space and (ii) �pð~R; ZÞ and
hij � j~rj �~rij can be replaced by �pðh~RiR; ZÞ and
hhiji respectively, where the brackets h i denote
ensemble average. The result is given in Appen-
dix A.

The velocities of the beads obey a Langevin-type
equation (see next section), whose form is deter-
mined by the forces acting on the beads. In the past,
the forces that have been included in the Langevin
equation for the assessment of the molecular statisti-
cal theory of temporary polymer networks were elas-
tic forces (transmitted through the chains), frictional
forces between polymer and solvent and statistical
entropy forces of Brownian motion [18,27–30].

In this work, we shall make a step ahead by
incorporating hydrodynamic interaction forces in
the model equations. It is recognized that hydrody-
namic interactions are expected to be less relevant in
more concentrated systems than in dilute solutions.
Moreover, the concept of blobs and screening in a
multiscale approach, e.g. [31,32], suggests that
hydrodynamic interactions should be screened on
the mesh scale of the network (up to the mesh scale
they are described by the solvent viscosity). How-
ever, the present molecular statistical model aims
to describe semi-dilute solutions of weakly entan-
gled polymers (2–10 entanglements per macromole-
cule) where it is presently unclear whether
hydrodynamic interactions may play a role under
conditions of practical interest. For this reason, pre-
dictions based on the new model equations will be
compared against experimental results for semi-
dilute solutions from literature. To the best of our
knowledge, this is the first time that hydrodynamic
interaction forces are included in the molecular sta-
tistical theory of temporary polymer networks.

2. Langevin-type diffusion equation with

hydrodynamic interaction

In formulating the equations of motion for the
beads it is assumed that inertial forces can be
ignored. This approximation is rather common
when using the spring–bead model [33,34]. In addi-
tion to the forces employed in earlier studies acting
on the beads of the molecular statistical theory of
temporary polymer networks (mentioned above),
here hydrodynamic interaction forces are also
involved. It is still left for the future to study the
forces of the excluded volume effect. To this end,
the Langevin-type equation takes the form

_~ri ¼~ri � ~r~u�
1

f

XM

j

jij~rj � D~ri ln W

�
XM

j

Xij �
XM

l

jjl~rl þ kBT~rj ln W

 !
ð2Þ

where the dot denotes the scalar multiplication.
The other mathematical symbols are explained as

follows:

• ~u is the fluid velocity.
• f is the effective friction constant, which accounts

not only for the friction between polymer and sol-
vent but also for the friction between macromolec-
ular chains that come in contact. This constant is
an experimentally determined parameter [18,27].

• (jij) is the elasticity matrix, which is associated
with the matrix (kij) of the spring constants of
chains (ij) through the following relations [27]

jij ¼
XM

j

kij ði ¼ jÞ; jij ¼ �kij ði 6¼ jÞ ð3Þ

For a linearized elasticity, the spring constants kij

are given from a known formula of Volkenstein
[35] and Flory [36].
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• D ¼ kBT
f is the diffusion constant, kB is Boltz-

mann’s constant and T is the absolute
temperature.

• Xij is the Oseen tensor, which describes the
hydrodynamic interaction between beads i and
j, and is given as

Xij ¼
1

8pgef hij
1þ ~hij~hij

h2
ij

� �
for i 6¼ j

0; for i ¼ j

8<
: ð4Þ
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where 1 is the (three-dimensional) unit tensor and
gef is the effective viscosity of the polymer solu-
tion, as deduced from the Stokes expression:

f = 6pgefRB, where RB ¼ 3MmonL
pMNAq

� �1=3

is the radius
of (spherical) beads.

Mmon is the molecular weight of the monomer, L

is the number of monomers in the network system
with M beads and 2M chains, NA is the Avoga-
dro–Loschmidt number and q is the polymer den-
sity. L and f are parameters that must be obtained
experimentally.

Along with L and f, there is yet a third parameter
which must be determined experimentally in order to
solve the model equations. This is m* (a frequency
parameter whose significance is explained in Section
4) [18,27]. Thus, we have a theory with three adjust-
able parameters which holds already before incorpo-
rating the hydrodynamic interaction. Nevertheless,
it is noteworthy that these parameters are deter-
mined from experiments in the Newtonian range,
so that predictions about the non-Newtonian regime
are indeed predictions. The same holds for elonga-
tional flow for which it is not necessary to determine
any parameter either in the Newtonian or the non-
Newtonian range.

The use of the effective viscosity gef of the poly-
mer solution and not of just the viscosity of the
solvent, as customary done for dilute polymer solu-
tions, is because f (as it is calculated; see Appendix
A) accounts also for the friction between polymer
units coming in contact. In this way, the screening
effect of network chains with regards the hydrody-
namic interaction of beads is taken into account.
Thus, we use an effective Oseen tensor, in the
same way we use an effective friction constant.
The effective viscosity gef is used also for comput-
ing the hydrodynamic interaction parameter h* =
(f/gef)[k/(36p3kBT)]1/2 (where k is the mean spring
constant).
3. Stress tensor and second moments

The stress tensor p of the network, which is the
base from which all material functions are com-
puted, is given according to Giesekus [19, Chapter
13] from the relation [27]:

p ¼ N Ac
Mpol

XM

i0
ki0 h~si0~si0 iS ð5Þ

Here

• c is the mass concentration of the polymer.
• Mpol is the molecular weight of the polymer.
• ~si0 are the eigenvectors belonging to the vibrating

system of beads and the elastic springs among
them. We use the subscripts i 0 instead of i,
because they signify modes and not beads.

• ki0 are the eigenvalues of the elastic matrix (jij).
• h~si0~si0 iS are the so-called second moments in the

mode representation of the vibrating molecular
network. Index ‘‘s’’ designates an ensemble aver-
age with respect to the entire mode space~S ¼ f~si0 g.

To calculate the stress tensor one needs to know
these second moments. Their calculation can be per-
formed by a standard procedure from the diffusion
equation, after this equation is transformed to nor-
mal modes. This methodology, employed also by
Kroener and Takserman-Krozer [18] and Chassapis
[27], leads to the following expression

o

ot
h~si0~si0 iS � bi0 � h~si0~si0 iS � h~si0~si0 iS � b

y
i0 ¼ 2ei0 ð6Þ

With b� being the transpose of bi0 and

bi0 ¼ ð ~r~uÞy �
�p
2
þ ki0

f

� �
1� Ai0 ;

ei0 ¼
�p
2
h~si0~si0 iSeq þ D1þ kBT Bi0 ð7Þ

In the above, ð ~r~uÞy is the transpose of the velocity
gradient tensor ~r~u and

Ai0 ¼
XM

i

XM

j

XM

l

qii0qli0jjlXij;

Bi0 ¼
XM

i

XM

j

qii0qji0Xij ð8Þ

In Eq. (8), qii0 is the ith component of the i 0th eigen-
vector of the elasticity matrix (jij) introduced in
Section 2.
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The value of second moments at equilibrium

ð~r~u! 0Þ is derived from Eq. (6):

h~si0~si0 iSeq ¼
kBT
ki0

1 ð9Þ

This value is exactly the same as in previous studies
[27]. Apparently, the present Eq. (6) for calculating
the second moments is compatible with the respec-
tive earlier one, which did not consider hydrody-
namic interaction forces [18,27–30].

Eq. (6) was derived under the assumptions:

1. Xij does not depend on~S and thus also not on ~R.
Without this assumption the second moments
can only be determined if the whole distribution
function is known. In order to avoid this compli-
cation, we replace Xijð~RÞ by Xijðh~RiÞ similar to
the variable substitution performed for the esti-
mation of p in Eq. (1).

2. h~si0~sj0 iS ¼ h~si0~sj0 iSdi0j0 . This equality holds rigor-
ously in the case that hydrodynamic interaction
is negligible, so we expect this to be a reasonable
approximation since the relaxation time
approach based on which the diffusion Eq. (1)
was derived is valid only when the z-distribution
is close to its equilibrium value [18], i.e. for not
too large velocity gradients. The effect of relaxing
this assumption is the subject of a subsequent
publication.

After that the Oseen tensor in mode representa-
tion for simple shear and elongational flow is given
by (superscripts denote the Cartesian tensor
components)
Xkl
ij ¼

1

8pgef

1PM
i0 ðqji0 � qii0 Þ

2hðsi0 Þ2iS
� �1=2

8><
>:

� 1þ ð�1Þð1�dklÞ
PM

i0 ðqji0 � qii0 Þ
2h~si0~si0 ikl

SPM
i0 ðqji0 � qii0 Þ

2hðsi0 Þ2iS

" #)

ð10Þ

The factor ð�1Þð1�dklÞ takes into account that the
above substitution of Xijð~RÞ by Xijðh~RiÞ changes
the sign of the non-vanishing non-diagonal Oseen
tensor components in simple shear flow, as obtained
after some elementary geometrical analysis (see
Appendix B). In Eq. (10), h(si 0)

2i is the trace of
h~si0~si0 i.
3.1. Shear and elongational flow

In the case of simple shear and elongational flow,
the velocity gradient tensor has the following form
in Cartesian coordinates:

~r~u ¼ _c

0 0 0

1 0 0

0 0 0

0
B@

1
CA; ~r~u ¼ _e

� 1
2

0 0

0 � 1
2

0

0 0 1

0
B@

1
CA
ð11Þ

_c and _e is the constant shear and elongation rate
respectively.

The viscometric functions that are of interest in
the case of elongational and simple shear flow are
the viscosity function gð _cÞ, the first and second nor-
mal-stress difference W1ð _cÞ, W2ð _cÞ and the elonga-
tional viscosity function geð_eÞ. They are defined as
follows:

gð _cÞ ¼ p21

_c2
; W1ð _cÞ ¼

p11 � p22

_c2
;

W2ð _cÞ ¼
p22 � p33

_c2
; geð_eÞ ¼

p33 � p11

_e
ð12Þ

From Eq. (6) one can calculate the components of
h~si0~si0 iS , that are needed for the calculation of the vis-
cometric functions. At this point, the following
must be stressed. The transition probability is a
function of the trace hðsi0 Þ2i [18]. Yet, the trace itself
is a function of the transition probability. Further-
more, the effective Oseen tensor is a function of
the second moments and vice versa. These features
turn the above equations into transcendental requir-
ing a numerical evaluation, which, however, does
not present particular difficulties to solve. Once
the value of the trace hðsi0 Þ2iS is estimated, the com-
putation of the mean distance of two arbitrary
beads, h, is straightforward from the relation:

h ¼ 1

MðM � 1Þ
XM

i¼1

XM

j¼1

hhijiS

¼ 1

MðM � 1Þ
XM

i¼1

XM

j¼1

XM

i0
ðqi0

j � qi0

i Þ
2hðsi0 Þ2iS

 !1=2

ð13Þ
4. Results and discussion

The aforementioned viscometric functions are
calculated for two different solutions of polystyrene
from literature [22,37] for the cases of simple shear
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flow and elongational flow. As it is explained in
Appendix A, the calculation of the viscometric func-
tions requires the simultaneous knowledge of the lim-
iting parameters g0 ¼ lim _c!0g and W10 ¼ lim _c!0W1

for shear flow. This requirement greatly diminishes
the extent of usable published experimental data to
compare with. The selected two polystyrene solu-
tions fulfil these conditions. The specific parameters
of these solutions are displayed in Table 1.

The calculation of the second moments, from
which the viscometric functions are computed,
requires the diagonalization of the (M · M) elastic
matrix. In the present calculation, a value of
M = 20 is employed, making a compromise between
accuracy and computational effort. For instance,
increasing M from 10 to 15 varies the viscometric
functions g, W1, W2 and ge by 0.15%, 0.25%, 35%
and 0.7%, respectively, while it rises the CPU time
from 6.7 min to 14.2 min. However, for a further
increase of M from 15 to 20 the corresponding vari-
ations are only 0.01%, 0.01%, 5% and 0.1%, whereas
the CPU time becomes 27 min. Table 2 presents a
few calculated parameters of both polymer
solutions.

As can be seen in Table 2, the incorporation of
hydrodynamic interaction in the model equations
results in a considerable reduction of the predicted
effective friction constant f(�22% for both solu-
tions). Apparently, the larger fw/oHI (effective fric-
tion constant without hydrodynamic interaction)
values, are in error since they attribute part of the
resistance of the beads (that due to hydrodynamic
interactions) to a friction contribution. At the same
table, one can further notice that accounting for
hydrodynamic interaction produces appreciably
lower values of the parameter m*, which determines
Table 1
Parameters of the polymer solutions

Polymer solution

A Polystyrene in toluene [37]
B Polystyrene in a mixture of tricresyl phosphate and dioctyl

phthalate [22]

c is the mass concentration of the polymer, Mpol is the molecular weig

Table 2
Calculated parameters of the polymer solutions

Polymer solution f M fw/oHI (10�6 N m�1 s) gef (Pa s) m� $ m�w

A 3.34 M 4.31 26.72 228.39 M

B 6.22 M 7.95 48.23 29.37 M

The subscript ‘‘w/oHI’’ refers to cases without hydrodynamic interaction
macromolecule (Mmon is the molecular weight of the monomer).
the stability of beads (see Appendix A). Yet, this
reduction is quite different between the two solu-
tions; 8.4% and 17.2%, respectively.

It must be noted here that the calculated values
of the hydrodynamic interaction parameter h* agree
fully with those that have been used in studying
polystyrene solutions by Johnson et al. [38], Prakash
and Öttinger [39] and Chih-Chen Hsieh et al. [40].

4.1. Mean bead distance and transition probability

Hydrodynamic interaction is responsible only for
a minor increase of the mean distance between arbi-
trary beads from hw/oHI to h, Fig. 4. The increase is
not observable in the Newtonian range (low _c or _eÞ.
Then it reaches a maximum at the beginning of the
non-Newtonian range. And finally, it decays gradu-
ally as the velocity gradient rises even further. The
behavior in the Newtonian range is accredited to
the isotropy of Oseen tensor at small velocity gradi-
ents e.g. Fig. 2. The decay at large velocity gradients
is the result of a progressive weakening of hydrody-
namic interaction caused by the increasing mean
bead distance h as _c or _e increases, Fig. 3.

Nevertheless, the most profound effect of hydro-
dynamic interaction is not in altering the mean bead
distance but in modifying the transition probability,
in other words the stability, of the beads. This is
shown in Fig. 6 where the ratio p/pw/oHI is plotted
against the shear or elongation rate for both poly-
mer solutions. As with h and p without a subscript
denotes the situation with hydrodynamic interac-
tion whereas pw/oHI the one without it. Evidently,
the incorporation of hydrodynamic interaction
reduces the transition probability appreciably and
as a consequence increases the stability of beads.
c (kg/m3) Mpol · 10�6 H (�C) g0 (Pa s) n0 (Pa s2)

125 1.86 25 31.5 5.5
51.75 1.92 22 35.5 20

ht of the polymer and H is the temperature.

=oHI ð10�25 s�1Þ CPM (–) Bead density (1022 m�3) h* (–)

249.42 4.9 9.92 0.148
35.48 4.6 3.73 0.149

forces. The acronym CPM = 2MMpol/(LMmon) means chains per

M



Fig. 3. Mean bead distance h of two arbitrary beads versus the
velocity gradient for the cases of simple shear and elongational
flow and for the two polystyrene solutions of Table 1.

Fig. 4. Ratio h/hw/oHI of the mean bead distance with incorpo-
rated hydrodynamic interaction over the mean bead distance
without hydrodynamic interaction versus shear and elongation
rate. Results for both polystyrene solutions of Table 1 are
included.

Fig. 5. Transition probability p versus shear and elongation rate
for the two solutions of Table 1.

Fig. 2. Comparison between the components X11, X22 and X33 of
the polymer solution A for the cases of simple shear flow and
elongational flow.

3242 D. Chassapis et al. / European Polymer Journal 43 (2007) 3236–3249

M
A

C
R

O
M

O
L

E
C

U
L

A
R

N
A

N
O

T
E

C
H

N
O

L
O

G
Y

This reduction is exclusively due to the decrease of
parameter m* (Section 4) which dictates the stability
of beads. As the velocity gradient increases, the con-
tribution of hydrodynamic interaction gradually
gets smaller and practically vanishes for _c or
_e > 1000 s�1. This decay is more intense and shows
up at lower velocity gradients in the case of elonga-
tional flow than shear flow.

4.2. Viscometric functions

4.2.1. Shear flow

Fig. 7a and b display the dependence of visco-
metric functions g, W1 and W2 on shear rate for both
polymer solutions of Table 1, after incorporating
the hydrodynamic interaction. For comparison,
the experimentally determined values for g and W1

[22,37] are also shown. A new element compared
to earlier predictions of molecular statistical theory
of temporary polymer networks which did not
account for hydrodynamic interaction [27,29,37] is
the non-zero value of viscometric function W2 (for
the improvements regarding the predicted g and
W1 values see later, e.g. Fig. 9). As can be seen, func-
tion W2 is negative throughout the whole examined
range of shear rate, taking absolute values much less
than the function W1. In addition, it exhibits a shear
thinning behavior over several decades of shear rate,
similar to that of g and W1. The negative sign is in



Fig. 6. Ratio p/pw/oHI of the transition probability p with
incorporated hydrodynamic interaction over the mean bead
distance without hydrodynamic interaction versus shear and
elongation rate for the two solutions of Table 1.

a

b

Fig. 7. Dependence of viscometric functions g,W1 and W2 on
shear rate: (a) for solution A of Table 1, and (b) for solution B of
Table 1.
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agreement with experimental measurements for var-
ious solutions [41–43] and it has been predicted by
other theories, too [39,44–46].

The zero shear rate value jW20j ¼ jlim _c!0W2j is
1.01% and 1.35% of the value of viscometric func-
tion W1 for solution A and B, respectively (Fig. 8).
In the same plot, it is apparent that the ratio
W2/W1 remains virtually constant up to _c ¼ 0:5 s�1

and 0.1 s�1, but for larger _c it steeply drops and
becomes practically zero for _c > 200 s�1 and
500 s�1, for the two solutions, respectively. The
shear-thinning behaviour of the ratio W2/W1 for
concentrated entangled and semi-dilute entangled
polystyrene solutions has been also confirmed
experimentally [43].

The influence of hydrodynamic interaction over
the other two viscometric functions g and W1 is
shown in Fig. 9. The plot displays the relative
percentage variation of these functions, Dgrel =
(g � gw/oHI)/gw/oHI · 100 and DW1rel = (W1 �
W1w/oHI)/W1w/oHI · 100 versus the shear rate _c. For
_c < 0:3 s�1 and 0.1 s�1, for solution A and B,
respectively, DgreljaiDW1rel are negligible. For
higher _c, both functions ascend rapidly until they
reach a peak value, whereafter they gradually des-
cend. Regarding differences between polymer solu-
tions A and B, Fig. 9 shows that hydrodynamic
interaction comes into play at lower shear rates
and is more intense for solution B. The first reflects
the corresponding behavior of X12 whereas the sec-
ond denotes the greater stability of the beads of
solution B (as already argued in Section 4.1).

Evidently, the incorporation of hydrodynamic
interaction forces in the so-called non Newtonian
range acts to improve by a small amount the agree-
ment of predictions with experimental measure-
ments. It must be added that the small percentage
increase in the predicted values of g and W1

(Fig. 9) gets actually higher if one takes into account
the significant variation in the parameters f and m*

after the incorporation of hydrodynamic interaction
(as noted in Section 4). The values of these
parameters – either before or after accounting for
hydrodynamic interaction – are calculated from
experimental measurements in such way to correctly
reproduce the limiting values g0 ¼ lim _c!0g and
W10 ¼ lim _c!0W1 for shear flow (see Appendix A).
As a result, the old theory in the absence of explicit
hydrodynamic interaction terms in Langevin Eq. (2)
includes any possible contribution of hydrodynamic



Fig. 10. Comparison between the viscometric functions g, W1 (for
solution B of Table 1) of the old and the new versions of the
theory. Calculations are based on the new values of parameters f
and m* which account also for hydrodynamic interactions.

.

.

.

.

Fig. 8. Ratio of the viscometric function W2 to the viscometric
function W1 versus shear rate for the two solutions of Table 1.

Fig. 9. Relative percentage variation Dgrel = (g � gw/oHI)/gw/oHI,
DW1rel = (DW1 � DW1w/oHI)/DW1w/oHI of viscometric functions g
and W1 versus shear rate for the two solutions of Table 1.
Subscript ‘‘w/oHI’’ refers to the case without hydrodynamic
interaction.

3244 D. Chassapis et al. / European Polymer Journal 43 (2007) 3236–3249

M
A

C
R

O
M

O
L

E
C

U
L

A
R

N
A

N
O

T
E

C
H

N
O

L
O

G
Y

interaction in these two parameters by predicting
(erroneously) increased friction and instability of
the beads. This is readily observed if one uses the
values of f and m* obtained after the incorporation
of hydrodynamic interaction for the estimation of
gw/oHI and W1w/oHI. Fig. 10 indeed shows (only for
solution B but it is similar for solution A) that the
deviation between the predictions of the old and
the new version of the theory is higher than in
Fig. 9. For _c < 0:3 s�1 this deviation is maximum
(9.1% and 14.1% for Dgrel and DW1rel respectively)
whereas it practically vanishes for _c > 10 s�1. This
behavior manifests that hydrodynamic interaction
decreases as bead distance increases (see Fig. 3).
Apparently, incorporating these forces leads to
higher predicted values for g and W1.

Nevertheless, what is of greater significance than
the slightly better agreement between predictions
and measurements is the indication that for semi-
dilute polymer solutions hydrodynamic interaction
forces may play a role, at least under certain condi-
tions, and so they should not be thoughtlessly
neglected as is the tradition for concentrated
solutions.
4.2.2. Elongational flow

Fig. 11 presents the variation of elongational vis-
cosity ge with respect to elongational rate for both
polymer solutions A and B, as predicted after incor-
porating the hydrodynamic interaction in the the-
ory. Clearly, for low elongational rates the value
of elongational viscosity is equal to the Trouton vis-
cosity, 3g0, where g0 ¼ lim _c!0g. This stability of the
elongational viscosity ge implies that in this region
the stress p33–p11 grows proportionally with the
elongational rate _e. Unfortunately, there are no
experimental data available for the particular poly-
styrene solutions to compare with. Nevertheless,
measurements for a similar polystyrene solution
with 6.6 CPM (instead of 4.9 and 4.6 of solutions
A and B, respectively) display a similar behavior
[47] For higher elongational rates, ge ascends a little



Fig. 12. Relative percentage variation Dgerel = (ge � gew/oHI)/
gew/oHI of viscometric function ge versus elongation rate for the
two solutions of Table 1. Subscript ‘‘w/oHI’’ refers to the case
without hydrodynamic interaction.

Fig. 11. Dependence of elongational viscosity ge, on elongational
rate: (a) for solution A of Table 1, and (b) for solution B of
Table 1.
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and becomes maximum at _e ¼ 3 s�1 and 1 s�1, for
the two polymer solutions, respectively. These peak
values are 20% and 34% of g0, respectively. This
increase is attributed to chain stretching and has
been also observed in the polystyrene solution of
[47] (their Fig. 9). Yet, in the latter study the
increase is much higher probably because their solu-
tion has a zero shear viscosity 	17–19 times larger
than that of our solutions A and B. For even higher
elongational rates, the elongational viscosity starts
to gradually decrease, intercepting the Trouton vis-
cosity at _e ¼ 8:3 s�1 and 3.8 s�1, for solutions A and
B, respectively. This decrease seems peculiar if one
considers the classical temporary network model
with linear springs for which the bead creation
and loss rates are independent of the deformation
history. The classical model yields an elongation vis-
cosity that goes to infinity at finite elongation rates
and steady state shear flow material functions that
are independent of the shear rate. But in our
approach, the transition probability increases expo-
nentially with the local elastic strain around a junc-
tion [18], Fig. 5. As a result, chain stretching and the
corresponding stress grow inversely proportional
with the elongational rate _e. In particular, the mean
chain length never exceeds 14% of the maximal pos-
sible length regardless how much the elongational
rate increases. Therefore, the use of linear springs
in our temporary network model does not lead to
an infinite stress at high elongation rates. For the
same reason the use of linear springs in our model
leads to steady state shear flow material functions
that depend on shear rate. Apparently, in our
approach it is not necessary to replace the Hookean
springs by finitely extensile springs to prevent
overstretching of the polymer.

Bhattacharjee et al. [47] did not observe a reduc-
tion of elongation viscosity with respect to elonga-
tion rate like the one shown in Fig. 11. This
discrepancy is likely because their measurements
were limited to low elongation rates, _e < 2 s�1. On
the contrary, a similar reduction with ours has been
reported by other authors for dilute polystyrene
solutions (in one case even semi-dilute) having much
larger molecular weight but with comparable zero
shear viscosity with our solutions A and B [48]. Fur-
thermore, a similar qualitative behavior has been
predicted for the case of a low-density polyethylene
melt by finite elements techniques [49,50] and has
been also measured for several entangled polysty-
rene melts [51].
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In Fig. 12, one can see that the hydrodynamic
interaction force makes the elongational viscosity
ge to take higher values. In particular, for _e <
0:02 s�1 and 0.07 s�1 (for solutions A and B respec-
tively), the relative percentage variation Dgerel =
(ge � gew/oHI)/gew/oHI · 100 is negligible. Then it
acutely rises until it reaches a peak value equal to
2.7% and 5.7% for _e ¼ 10 s�1 and 3 s�1 (for solu-
tions A and B, respectively). For even higher veloc-
ity gradients, Dgerel reduces considerably but
gradually.

In the case of polymer solution B, the influence of
hydrodynamic interaction starts to play a role at
lower shear rates and is more intense than in the
case of polymer solution A. The first feature reflects
the respective behavior of X33 whereas the second
the greater stability of beads in solution B, as
already explained in Section 4.1.
5. Conclusions

The present study copes with the incorporation
of the hydrodynamic interaction force into the
molecular statistical theory of temporary polymer
networks, an addition which appears to deserve
more attention regarding the quantitative descrip-
tion of the complex behavior of semi-dilute polymer
solutions [27–30]. For this, the response of a Lange-
vin-type diffusion equation, accounting also for
hydrodynamic interaction, was examined paramet-
rically with the aid of the Oseen tensor. The solution
of the diffusion equation for the cases of simple
shear and elongational flow leads to the estimation
of the respective second moments and, conse-
quently, the stress tensor and viscometric functions
g, W1, W2 and ge. Apart from the increase in the pre-
dicted values of g and W1 in the so-called non-New-
tonian range which improves a little their agreement
with experimental measurements, one should also
note the prediction of non-zero values of W2. More-
over, the predicted negative sign of W2 is in agree-
ment to experimental measurements for various
solutions [41–43].
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Appendix A. The transition probability

According to Kroener and Takserman-Krozer
1984 [18], the transition probability is given by the
equation
�pðh~RiR;ZÞ¼
XM

i

Bi exp
1

kBT

XM

i0

XM

j

kijðqii0 �qji0 Þ
2hðsi0 Þ2iS

" #

ðA:1Þ
where
Bi � m�
kBT
a�

� �3

ðzia þ zibÞ
5
2ðzic þ zidÞ

5
2 ðA:2Þ
with
a� ¼ 3kBT
1

r
1� cos w
1þ cos w

ðA:3Þ
w is the bond angle and r the structure factor of
Volkenstein’s statistics [35], both being parameters
known for many polymers. Also, zia through zid

are the number of monomers of the four chains
forming the junction i. Their values follow from
the statistics. This is described in detail in Kroener
and Takserman-Krozer 1984 [18] and Chassapis
1986 [27]. Moreover, m* has the dimension of fre-
quency and is taken from the experiment together
with the friction constant f and the monomer num-
ber L. This is done by comparison with the material
parameters g0 ¼ lim _c!0g and W10 ¼ lim _c!0W1 for
shear flow. For details see Chassapis [27, Sections
9 and 10], keeping in mind that after the incorpora-
tion of hydrodynamic interaction, the respective
equations change to:
g0 ¼ gS þ
N Ac

LMmon

kBT
2

XM

i0

1
peq

2
þ ki0

f þ Ai0
;

W10 ¼
NAc

LMmon

kBT
2

XM

i0

1

peq

2
þ ki0

f þ Ai0

� �2
ðA:4Þ
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Appendix B. The factor ð�1Þð1�dkl Þ
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Let us consider two arbitrary beads i and j for the
case of simple shear flow with j being located in the
upper semi-infinite space of i, i.e. on the 1st or 2nd
quadrant, respectively (see at the schematic above).
The corresponding average vectors h~hiji are denoted
as ~hþ and ~h�, because the X12 component of the
Oseen tensor Xijð~hþ=�Þ is positive or negative
accordingly:

X12þ 	 hþ1 hþ2
ðhþÞ3

> 0; X12� 	 h�1 h�2
ðhþÞ3

< 0;

with hþ=� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhþ=�1 Þ2 þ ðhþ=�2 Þ2

q
ðB:1Þ

Furthermore, in accordance with the findings of
the molecular statistical theory of temporary poly-
mer networks [18,27–30], the following relations
hold:

h~hij
~hiji ¼

XM

i0¼1

ðqji0 � qii0 Þ
2h~si0~si0 i ðqii0 ¼ const:Þ

h~si0~si0 i11 ¼ h~si0~si0 i33 ¼ h~si0~si0 i22
eq ¼

kBT
ki0
¼ const:

h~si0~si0 i22 P h~si0~si0 i22
eq

h~si0~si0 i12 ¼ h~si0~si0 i21 P 0

ðequality holds in equilibriumÞ
ðB:2Þ

Combining relations (B.2) and (B.1) yields the fol-
lowing qualitative model of the average behavior
of the aforementioned system of two beads:

In equilibrium ð _c ¼ 0Þ it is hþ1 ¼ h�1 ¼ hþ2 ¼ h�2
due to the isotropy of the network and so X12þ

eq ¼
�X12�

eq . Consequently, the mean value X12
eq ¼

1
2
ðX12þ

eq þ X12�
eq Þ is equal to zero. As shear rate

increases ð _c > 0Þ; hþ2 increases and h�2 decreases
because of the orientation of the network chains,
whereas h1 stays unchanged on account of the sta-
bility of h~si0~si0 i11. This results in higher absolute val-
ues of X12� and lower values of X12+. Thus, the
mean value X12 ¼ 1

2
ðX12þ þ X12�Þ is negative.

In the present case since we do not know the aver-
age vectors~hþ and~h� for each separate quadrant, we
can use their composite resultant~h, in a manner sim-
ilar with the substitution of Xijð~RÞ by Xijðh~RiÞ, and
then the following qualitative model emerges:

In an equilibrium state ð _c ¼ 0Þ, h2 ¼ 0 because of
the network isotropy. This yields that the mean
value X12

eq 	 h2 equals to zero. With increasing shear
rate ð _c > 0Þ, the average vector ~h rotates in the 1st
quadrant due to orientation of the network chains
and makes h2, to rise while h1 remains unchanged
dictated by the stability of h~si0~si0 i11. As a conse-
quence, X12 	 h2 increases and becomes positive,
i.e., contrary to the more accurate description above
Analogous is the situation when the bead j is located
in the lower semi-infinite space of i.

From the above, it is evident that the factor
ð�1Þð1�dklÞ in Eq. (10) acts to restore the correct sign
in the approximation Xijð~RÞ ! Xijðh~RiÞ whereas the
absolute value of the non-vanishing non-diagonal
Oseen tensor components remains unaffected.
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[12] Öttinger HC. Modified reptation model. Phys Rev 1994;E50:
4891–5.

[13] Marrucci G. Dynamics of entanglements: a nonlinear model
consistent with the Cox-Merz rule. J Non-Newtonian Fluid
Mech 1996;62:279–89.

[14] Ianniruberto G, Marrucci G. On compatibility of the Cox-
Merz rule with the model of Doi and Edwards. J Non-
Newtonian Fluid Mech 1996;65:241–6.

[15] Fang J, Losinski A, Owens RG. Towards more realistic
kinetic models for concentrated solutions and melts. J Non-
Newtonian Fluid Mech 2004;122:79–90.

[16] Watanabe H. Viscoelasticity and dynamics of entangled
polymers. Prog Polym Sci 1999;24:1253–403.

[17] Altukhov YuA, Pokrovskii VN, Pyshnograi GV. On the
difference between weakly and strongly entangled linear
polymers. J Non-Newtonian Fluid Mech 2004;121:73–86.

[18] Kroener E, Takserman-Krozer. Statistical mechanics of
temporary polymer networks. Rheol Acta 1984;23:1–9. and
139–50.

[19] Bird BR, Hassager O, Armstrong RC, Curtis CHF. Dynamic
of polymeric liquids, vol. 2. New York: Wiley; 1987.

[20] Giesekus H. A simple constitutive equation for polymer
fluids based on the concept of the deformation dependent
tensorial mobility. J Non-Newtonean Fluid Mech 1982;11:
69–109.

[21] Phan-Thien N, Tanner RI. A new constitutive equation
derived from network theory. J Non-Newtonean Fluid Mech
1977;2:353–65.

[22] Li JM, Burghardt W, Yang B, Khomami B. Flow birefrin-
gence and computational studies of a shear thinning polymer
solution in axisymmetric stagnation flow. J Non-Newtonean
Fluid Mech 1998;74:151–94.

[23] Verbeeten WMH, Petres GWM, Baaijens FPT. Viscoelastic
analysis of complex polymer melt flows using the eXtended
Pom-Pom model. J Non-Newtonean Fluid Mech 2002;108:
301–26.

[24] Quinzani LM, Armstrong RC, Brown RA. Birefringence
and Laser-Doppler velocimetry (LDV) studies of viscoelastic
flow through a planar contraction. J Non-Newtonean Fluid
Mech 1994;52:1–36.

[25] Baaijens FPT, Baaijens HPW, Peters GWM, Meijer HEH.
An experimental and numerical investigation of a viscoelas-
tic flow around a cylinder. J Rheol 1994;38:351–76.
[26] Baaijens HPW, Peters GWM, Baaijens FTP, Meijer HEH.
Viscoelastic flow past a confined cylinder of a polyisobut-
ylene solution. J Rheol 1995;39:1243–77.

[27] Chassapis D. Zur molekular-statistischen Theorie tempora-
erer Plolymernetzwerke – Theoretische Untersuchungen und
Vergleich mit Experimenten. PhD dissertation, University of
Stuttgart, 1986.

[28] Kroener E, Chassapis D, Takserman-Krozer R. The physics
of temporary polymer networks. In: Kramer O, editor.
Biological and synthetic polymer networks. London: Else-
vier; 1988. p. 185–205.

[29] Chassapis D, Babos G, Takserman-Krozer R, Kroener E.
Statistical mechanics of temporary polymer networks,
dynamical effects. Rheol Acta 1989;28:193–201.

[30] Chassapis D, Balouktsis A, Karapantsios TD. Flow bire-
fringence of temporary polymer networks. Eur Pol J 2002;
38:1071–8.

[31] De Gennes PG. Scaling concepts in polymer physics. Ith-
aca: Cornell University Press; 1979.

[32] Larson RG. Constitutive equations for polymer melts and
solutions, Series in chemical engineering. Boston: Butter-
worth; 1988.

[33] Rouse PE. A theory of the linear viscoelastic properties of
dilute solutions of coiling polymers. J Chem Phys 1953;21:
1272–80.

[34] Zimm BH. Dynamics of polymer molecules in dilute
solution: viscoelasticity, flow birefringence and dielectric
loss. J Chem Phys 1956;24:269–81.

[35] Volkenstein MV. In: Configurational statistics of polymer
chains. New York: Interscience; 1963.

[36] Flory P. Statistical mechanics of chain molecules. New
York: Interscience; 1969.

[37] Krozer S, Tawadjoh M, Gruber E. Zur Beschreibung der
rheologischen Eigenschaften konzentrierter Polystyrol-Lös-
ungen. Rheol Acta 1977;16:438–43.

[38] Johnson RM, Schrag JL, Ferry JD. Infinite-dilution visco-
elastic properties of polystyrene in H-solvents and good
solvents. Polym J 1970;1:742–9.
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